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The first studies on the stability of steady motions were carried out by Routh ~1.2~. Routh’s 

method is based on his fundamental theorem [Z], which was considerably supplemented 
by Liapunov [3]. The stability of steady motions can also be studied on the basis of the 

Liapunov stability theorem [4] ; the latter involves cons~ucting the Liapunov function 
from the integrals of the equations of motion by the Chetaev method [4-S]. These two 

approaches are basic to the investigation of the stability of steady motions. 
We intend to show that under sufficiently broad assumptions the same stability condi- 

tions are obtainable by using the Routh theorem on the one hand and the Chetaev method 

for constructing the Liapunov function (in the case of a complete bundle of integrals) 
on the other. A very similar result is arrived at in [‘I]. Bifurcation of steady motions is 
considered. Two theorems on the nominal sign constancy of the quadratic forms are 
noted. The suitability of the Routh theorem for finding the steady motions and the con- 

ditions of their stability for a rigid body with a cavity completely filled with an ideal 
or viscous fluid is demonstrated (stability is established with respect to the parameters 
characterizing the state of motion of the body and with respect to certain other para- 

meters characterizing the motion of the ikid in integral fashion). This formula~on of 

the problem of stability of motion of a fluid-filled body was proposed by Rumiantsev 
[6], who solved it by constructing the Liapunov function by the Chetaev method in the 

form of a bundle of integrals of the equations of motion, Unlike Amol’d (e.g. 181). who 

investigated the stability of steady motions of a fluid, we shall analyze the stability of 
the steady motions of the body-fluid system with respect to a finite number of parame- 

ters. 

1, Liapunov formulated the Routh theorem with his own addenda in the following 

way E31. 
When a certain number of time-independent integrals has been obtained for the dif- 

ferential equations of motion of some system, and when among these integrals there 
exists one which can have a minimum or maximum for given values of the other inte- 

grals, assuming this m~imum or maximum value for certain values of the variables 
occurring in it, then these values in general correspond to one of the real motions of the 
system; moreover, this motion is stable with respect to the variables in question at least 
for perturbations which do not alter the values of the other integrals. If the integral in 
question also has a minimum or maximum for all values of the other integrals suffici- 
ently close to the given values and if the values of the variables which minimize or 
maximize this integral are continuous functions of the values of these integrals, then 

the notion in question is stable for all perturbations, 
Lkpunov did not prove this theorem. However, his later theorem on stability [4] has 

been used to show [‘I, 91 that in the case of continuous integrals verification of the Lia- 
punov requirement of ~conditional stability is not necessary, 
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Theorem 1. Let the equations of motion of some system have the time-indepen- 
dent integrals 

U, (Ji, x2, . ..I zn) = C@, u, (21, q, ***I z7J = Q, **et u, (%, %, ***, 213) = ct (1.1) 

continuous with respect to the quantities x1, xs, . . . . z~, and let UO have the isolated 
minimum (maximum) 

UO (%“1 zzO, . . . . znO) = cgQ 
for fixed values of the remaining integrals, 

u, (zr, rs, ..*, 2,) = CiO, . . . . Cjk(X,, 22, -.., I*) = eke 0.2) 

assuming the m~imum (ma~mum) for the values z,“, z,“, . . . . ano of its variables. 
These values then correspond to one of the real motions of the system , and the motion 
is stable with respect to sl, zs, . . . . z,. 

Pro o f. Let us consider the system motion in which z1 = .zr’, X$ = r,“, . . . , + = +I’ 
at the instant t” . Kn addition, let us assume that Z, = zl*, 2% = %*, ..., %I = %* at some 
instant t* and that at least one of the values z,*, x2*, . . . . z,* does not coincide with the 
corresponding value z,“, ZQ’, . . . . z,“. Then, by definition of the integral, we have 

lJo @?I*, a?%*, . ..) .m*) = UQ (3r0, zgo, . ..) znO) = CO0 

Since co0 is the minimum (maximum) of u. under conditions (1.2), it must be the 
case that 

CT, &I*, zs*, . . . . zn*) > Uo (Zl”, z,“, “., x,“) = co’ (Uo WV z,*, -*., ,z,*) < co*) 

which contradicts the preceding equation, Hence, the quantities zzr, 4, . . . . z,, in the 
motion under consideration retain their constant values zr”, x,‘, ..,, znO. 

Further. let us consider the function @I. 7, 93 
B 

Q, (yl, y:, . . . , y,) = 2 vi2, Vi = Ud - ci’, i = 0,1, . . . , k 

i=o 

By the conditions of theorem, this function is motive-definite with respect to the 
perturbations yi = xi - Xi0 (i-z 1, 2, . . . . n) and is an integral of the system and thereby 
satisfies the requirements of the Liapunov stability theorem 143. The theorem has been 
proved. 

Stability can also be proved [lo, II] by reasoning similar to that of the Lejeune-Diri- 
chlet proof of the Lagrange theorem, 

Note 1. The form of the equations of motion of the system under investigation is 
not used anywhere in the above proof. Hence, the iionth theorem can be used to investi- 
gate the steady motions not only of systems with a finite number of degrees of freedom, 
but also of systems with infiiitely many degrees of freedom. 

Note 2. The above proof remains valid when [I,, is not an integral, but rather some 
function (or functional) which does not increase (does not decrease) along the system 
motions 112% 

Note 3. Theorem 1 is also valid wbnn the variables zr, q, . . . . z, are restricted 
by relations of the form F (x1, se, . . . . 2%) = 0 

In this case the restrictions must be taken into account along with conditions (1.2) in 
determining the minimum (maximum) of U, These relations can represent either holo- 
nomic constraints [12. 131, or particular integrals of the system (in the latter case only 
nominal stability can be established). 



884 V. N. Rubanovslzii and S. Ia. Stepanov 

Note 4. In the case of conservative systems with cyclical coordinates the require- 
ments of Theorem 1 reduce to the requirement that the altered potential energy of the 
system be minimal [I]. 

2, Let us consider the Chetaev method and its relationship to the Routh theorem. 
Let the parameter values J,,t = x10, z2 = XBO, . . . . x, = xn) 

correspond to some steady motion of the system, In the Chetaev method the Liapunov 

function for this motion must be determined in the form of a bundle of integrals, 

h k 

5’ = I’0 -t Jf hil’i + 2 I”,ifi$z (2.1) 

i- I i 1 

vi = ui (Xx, X$, . . . . 2,) - u+ (Xx0, xzc, ..-I x*“) 

If the constants h,, h,, . . . . h,, pi, pz, . .., pe can be chosen in such a way that v is a 
function of constant sign with respect to yi =I xi - xi “( i = 1, 2, . . . , n) , then the steady 
motion is stable with respect to zr, x2,, . . . . x, by virtue of the Liapunov stability theo- 

rem. If (2.1) does not contain squares of some of the integrals IT1, Vzq . . . , V,, then the 
bundle of integrals will be called “incomplete”. 

Now let us assume that integrals (1.1) are continuously differentiable twice and con- 
sider the basic case where the conditions of positive-definiteness of the function V and 

of the nominal minimum of uo(the case of negative-definiteness of 1’ and of the nomi- 
nal maximum of UO are reducible to the same case by changing the sign of the integral 

U,) can be formulated as the Sylvester conditions of sign constancy or nominal sign 
constancy 114~ of certain quadratic forms. 

The ore m 2. Under the above conditions the Routh theorem and the Chetaev method 
of constructing the Liapunov function in the form of a complete bundle of integrals yield 
the same stability conditions provided the same integrals are used. 

Proof. Let us compare the stability conditions obtainable from Theorem 1 and by 
means of the Chetaev method. 

The values of the variables x,, q, . . . . zTn for which U, has stationary values under 

conditions (1. ‘2) can be determined by the method of indefinite Lagrange multipliers 
from the equations 

Let 
TV== U@ +,A1 (V, - et”) + . . . . -fh,* (U,; -- CL’) 

h, = hlO, .“., h, = h,;O, x1 =r x10, . . . . I, z x 0 n (2.3) 

be a solution of system (a. 2) and let us introduce the notation 

where the derivatives must be computed for values (2.3). We assume that 

det I( bij $; iz: # 0 (2.4) 

The values zr’, x2”, . . . . xnO correspond to the nominal minimum of the integral ~r,if 
the quadratic form 

(.+A ?/I = 2 %jYi?8j (2.5) 

i, j=l 
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is positive-definite under the conditions 

(BY), = bilYl + bizYa + . . . + +,,y,, = 0, i = 1, 2, . . . , k (24 

Let us consider the determinant 
A=(-+;‘; 

I .I 
(2.7) 

where 0 is a (k x k) null matrix and where the symbol z denotes transposition. This 
determinant is equal to within (-1)” to the Jacobian of system (2.2) and to the Hessian 

W in hi, he, . . . . I, , xl, x2, ..,, x,, for values (i?. 3). Quadratic form (2.6) is positive- 
definite under conditions (1.6) if and only if [14] the principal diagonal minors of the 
determinant A starting with the minor of order 2k + 1 are positive, i.e. if 

Akll > O,..., A,, > 0 (2.8) 

where Ai is the principal diagonal minor of order k + i . Thus, fulfillment of condi- 
tions (2.8) ensures fulfillment of the requirements of Theorem 1. 

The constants hl, h’~, . . . , A,; in the Chetaev method must be chosen .in such a way as 
to eliminate the linear part of bundle (2.1) ; they obviously coincide with values (P. 3). 

Moreover, 
v = PY, Y) + 0 ( IY 1% J$roo(4/s = 0 

k 

(CY, Y)=(AY*Y) +x tbPY),2, IYV =Y12 +.* * +YnZ (2.9) 

"=I 

It is easy to show that the principal diagonal minors Dl, DC, . . . . D,, of the discrimi- 

nant of the quadratic form (Cy, y) are equal to the respective principal diagonal minors, 
beginning with the minor of order k + 1 , of the determinant D , 

D = (- Qk IL 
Q B 

l...Pk BT A ' I I Q = - diag (~~1-‘, . . . , Pk-‘) 

The Sylvester conditions of positive-definiteness of quadratic form (2.9) can be ex- 

pressed in powers ~1, pz, . . . . pr as follows : 

a,” i2 

D, = 
.$ fLa*. . . ~Lcl, ;..l.* 1.; . + 

i I i Pa,. * . Pa,,_lA:‘-l+ 
aI<. . < a,=1 a,1" * ayy a,< . .< a,-1=1 

+ i pa,. . . p,V_ZA;l”‘aV-Z + . . . + AyO > 0 (Y = 2, 3, . . . , k) 

a,<... < ‘z”-2’1 

D,=plpz.. .I+*+ i pa, . . . p.,,A;“+-’ + 
a,< . . . < ak-l=l 

+ ; pLa,. . . p,k_aA;“‘ak-2 + . . . + A,’ >O (x = k + 1, . . . , n) 

RI<... < a&2=1 
Here A:“‘ap 

A 
01 

are the principal diagonal minors of the order o + p of the determinant 
. . . =‘p 

similar to A, but satisfying only some of conditions (2.6) (those with the num- 
bers al, a%. . . . , a,), and A,” = det I\ aij #; :zy 

On fulfillment of conditions (8.8) and sufficiently large ~1, ~2, . . . . p,+ conditions(S.10) 
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are fulfilled by virtue of (2.8) and (2.4). Quadratic form (2.9) and the function V are 
then positive-definite. Conversely, if conditions (2.10) are fulfilled for some PI, . . , kk , 
then quadratic form (2.9) is positive-definite, and especially positive-definite under 

those conditions (2,6) for which (2.9) coincides with (2.5). Conditions (2.8) are then 

fulfilled by virtue of their necessity. Theorem 2 has been proved. 
The following theorem on the sign constancy of the quadratic forms reflects the rela- 

tionship between the Chetaev method and the Routh theorem. It is also related to the 
“method of penalty functions”. 

Theo r e m 3. Quadratic form (2.5) is positive-definite under conditions (2.6) if 
and only if quadratic form (2.9) is positive-definite for sufficiently large pl, pa, . . . . pk 

(‘). 
Theorem 3 implies that if the perturbations ~1, ~2, . . . . Y, must satisfy relations of the 

form F (Yl, Y2l a.-, Y,) = 0 (F (0, 0, . . . . 01 = 0) (2.12) 

then the left sides of these relations can be included in bundle (2.1) along with the inte- 

grals VI, V,, . . . . V,. The resulting stability conditions are equivalent to those obtainable 
either by eliminating the dependent variables or by exploiting the positive-definiteness 
of bundle (2.1) ; moreover, if relations of the form (2.11) express the holonomic or non- 

holonomic constraints imposed on the system (e. g. if they are particular integrals of the 

system), then the resulting stability is nominal. 

Note 5. In computing determinants (2.8) it is sometimes expedient to use the 
Laplace theorem on determinants, expanding them in the first k rows and columns. 

3. Conditions (2.8) of nominal sign constancy of quadratic form (2.5) remain valid 

if we replace assumption (2.4) by the weaker requirement [15] 

rang 11 bij \1:=_1”: izpl = k 

However, this assumption can also occasion certain difficulties in studying stability 

domains in the parameter space. 

We note that conditions (2.8) are symmetric in yl, ye, . . . . y, and assume only that 
Eqs. (2.6) are independent. 

Theorem 4. Quadratic form (2.5) is positive-definite under independent conditions 
(2.6) if and only if &,t>O, . . . . S, = A>0 (3.1) 

where the St represent the sums of all the possible minors of order k + i of determinant 

(2.7) which border its principal diagonal minor of order k (consisting of zero elements). 
P r o o f. Let us introduce the n-dimensional Euclidean space R with the orthogonal 

axes 11, x2, . . . , xn and denote its ( I? - k )-dimensional subspace defined by Eqs. (2.6) 

by Q . Next, let us reduce quadratic form (2.5) on subspace Q to canonical form. To 

this end we determine its fixed values on a unit sphere 

(5, z) = zr;L + xf + . . . + xn2 = 1 (3.2) 

in the subspace Q. The equations for determining the fixed points of quadratic form 
(2.5) under conditions (2.6) and (3.2) can be expressed in terms of the Lagrange multi- 
pliers (5, AI, ha, .., hk in the form 

l ) After submitting the present paper for publication we learned that a similar statement 
has already been formulated by Prof. P. A. Kuz’min. 
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aF/faz~=o (iz=1,2,. . . ,n), ZF=(Az,r)- 6 (r, 4 + 2 2 hj P4j (3.3) 
j=l 

The determinant of subsystem (2.6), (3.3) linear in hl, . . . . h,, xl, . . . . 5, must vanish 

for the solutions of system (2.6). (3.3). (3.2). 

D' (a) = 

Here 
a0 = S,, al = Sril, . . . . izn_]. = S, = A (3.5) 

As in the case of the Sylvester theorem we can show that all the roots ~1, Go,... , c&-r 

of Eq. (3.4), which is a natural generalization of the secular equation, are real and equal 
to the required fixed values of form (‘2.5) on sphere (3.2). 

In the axes ZX, 22, . . . . z,._k whose orthogonal normed basis is defined by the solutions 

of system (3.2). (2.6). (3.3) for CJ = 01, (12, . . . . G,_~ quadratic form (2.5) on the subspace 

Q Can be written as (A y, $/)(2*e) = a,212 + 6pz22 + ... + Qn-&_k (3.6) 

The quantity a0 in Eq. (3.4) is positive, since it is equal to the sum of the squares of 

all the possible determinants of order k which can be constructed out of the columns of 
the matrix B. 

According to the Li&ard-Chipart test, the roots of Eq. (3.4) are positive only if 

ar>o, ItP>O, ‘a*, a,_&>0 (3.7) 

It is clear that these conditions are also sufficient (this is easy to prove indirectly). 
The statement of the theorem follows from (3.7) with allowance for (3.5) and (3.6). 

Making use of the relations 

a n_k = D' I,=, = A, a,_k_v =q d’D’ 
I 

(~=1,2,...,n-k-11) 
dsY a=0 

which follow in self-evident fashion from 13.4), we can express conditions (3.4) as 

D’ lo, > u, (- 1)” s >O (v=1,2,.. .,n---k-l) (3.8) 
o=(J 

In the case k > 1 steady motions (2.3) and the left sides of the inequalities occurring 
in (2.8), (3.1). or (3.8) of these steady motions can be regarded as functions of ~1~~ c2*1 
. ..) ck" which are ~n~uous at least for & # 0 by virtue of the familiar implicit func- 
tion theorem. The condition A # 0 also implies the independence of Eqs, (2.6). 

If conditions (2.8) or (3.1) are fulfilled at some point of the parameter space clO, czO, 
. . . . Ck ‘, then motions (2.3) are stable for all cl”, czot ---t CI.O from the domain defined 
by the condition A > 0 which contains the point in question. In fact, with continuous 
variation of the parameters conditions (3.1) can be violated only if one of the roots of 

Eq. (3.4) vanishes. This can occur only when an-k = A = 0. This fact is closely related 
to the Poincark-Chetaev theory of bifurcation of equilibria [4]. 

4, Let us consider the steady motions of a solid body having a single fixed point and 
containing a cavity completely filled with a homogeneous incompressible ideal or vis- 
cous fluid, as well as the stabiliry of these motions in a central gravitational field ( l ). 

‘) The same problem for the case of a solid body was solved by the authors of [15] and 

IPI. 



888 V. N. Rubanovskif and S. Ia. Stepanov 

Let us introduce the movable rectangular coordinate system 0~~x2~3 with its origin 
at the fixed point 0 of the body (which lies at the distance R from the attracting cen- 

ter N) and with its axes directed along the principal axes of the ellipsoid of inertia of 
the system for the point 0. For simplicity of calculation we assume that the principal 
axes of the ellipsoid of inertia of the fluid for the point 0 coincide with the axesz,, I~, 
~3. We also introduce the following notation: Ai. Bi, Gi are the moments of inertia 
with respect to the axes zi of the body, fluid. and the system as a whole, respectively ; 
co%, Gi, g:i are the projections on the axes xi of the instantaneous velocity vector of the 

body and of the kinetic moment vectors with respect to the point 0 of the fluid in its 
absolute and relative motions; ui are the projections on the same axes of the relative 

velocity vector u of the fluid particle with the coordinates 51, xp, xs; z is the volume 
of the cavity, p is the density of the fluid, n is the coefficient of viscosity, ,I/ and Xi0 
are the mass and the coordinate of the centroid of the system, F: is the gravitational 
acceleration at the distance X from the attracting center, Yi are the direction cosines 
of the “vertical” NO relative to the axes xi, and 

The kinetic [6] and potential energies of the system can now be written as 

Cl = BlWl + PI, 11',? = , p [Ul + (02 c - G2 / B2)x3 -(ws - G3/( B3)x2]2~~~ (En) 

The kinetic energy and kin& moment theorems yield the relations 
dH d --- dt - dt (T + ZI) = - p s (rot u)~ dr 

5 

I+$ (A ioi + C,) T* = const 

For 
iL1 

n = $2, h_ = 2, ET, = H, UI = K, fin = I’, hx = - 0 

hs=-6, “i=oi’ “3it - --c i’ xe+; = Tp xe+i = wi (i=l,2,3) 

equations of steady motions (2.2) have the solutions (w and d are arbitrary constants) 

o1 = oyr, Gr = 08ty1, ~1 = 0 (~1 = 6) (4.1) 

[e + (w2 - x2) Cl1 y1 = Mgz1” (x2 = 3g / R) (123) 

describing the steady rotations of the system as a whole about the “vertical” Y at the 
constant angular velocity o. The axes of rotation in the body lie on the Staude cone 

2r”(C* - Cs)*1273 + 2z” (C3- cl)73^(1+ x3o(G- wrfrz = 0 

as in the case of a solid body [15]. 
Stability conditions (2.8) Ai >O (i = 3, ..,, 12) of steady motions (4. I) reduce to the 

two following inequalities : s2I; > 0, &&!.a + SPSJ > 0 (4.21 

These inequalities are the same as those obtained for a solid body in [Xl. 

Here 
L = 2 (h - Cl) (C, - c3)2Tz"Y3z, s = x (h -C,)(h- Cs) r12 

(123) (123) 

J = CQQ I_- Czy2 + Csys2, LZ = 02 - x” = - a / h 



On the Routh theorem and the Chataev method for consttucting 
the Liapunov function 

889 

and the summation symbol accompanied by (123) means that the two other terms can 
be obtained from the term written out by permuting the subscripts 1,2,3, 

Thus, conditions (4.2) are sufficient conditions of stability of steady rotations (4.1) 

of a body with a fixed point and a cavity completely filled with an idea1 or viscous 
fluid in a central gravitational field with respect to the quantities a;, Gi, yr~ u? 

(i = 1, 2, 3). 
However, the computations can be simplified considerably as indicated in Note 4. 
The altered potential energy W* is given by [5, 6. 131 

koz 
w*=ll+~ 

where J is the moment of inertia of the system with respect to the “vertical” NO, and 

k, is the value of the constant area integral for the steady motion. 

The fixed points of the function Iv’ correspond to the steady rotations of the system 
as a whole about the “vertical” Y at the constant angular velocit)l o. Recalling the 

geometric relation l’ = 1, we infer from this that expressions (4.1) are valid. 
The conditions for the minimum of the function u’* under the condition r = 1 are 

reducible to the requirement of positiveness of the principal diagonal third- and fourth- 
order minors of the determinant 

where 
A = - det 11 efj {i: ;I: , Lij = eji 

etr = 0, ei2 = ?I, ers = ~2, 04 = yr 

elii, r+j = 402ciCjTiTjJ-’ + 6,j (h. - Ci) Q (i, i =: 1,2,3) 

and where the bij are Kronecker deltas. 

Computing these minors and making use of Theorem 4, we obtain the following con- 
ditions of stability of steady rotations (4.1) : 

P 
403r* A: (CT,-- C3)3 r&J3 + B 2 (h - Cl) (rz3 + m>o (4.3) 

(1231 (133) 

4w?U-” 2 (h - Cl) (C, - ca:9)7 y&a2 + 52% c (n - C2) (A - C3) r1" > 0 

ok f.123) 

which possess the advantage over conditions (4.2) because they do not degenerate for 

X(C2- Cs)2y12 TsZ = 0 
(123) 

Conditions (4.3) and (4.2) are equivalent except in this case. 
The authors are grateful to V. V. Rumiantsev for reading the present paper in manu- 

script and for his comments on it. 
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PE~ODI~ SOL~IONS OF SECOND ORDER Dads SYST~ 

CLOSE TO P~E~E-~S~ HEDONIC SYSTEM 
PMM Vol. 33, N%, 1969, pp. 912-915 

N. N. SEREBRIAKOVA . . 

(Receiv$%$%, 1969) 

We show the conditions which must be satisfied by the approximating functions, in order 
that the result known for the nearly Hamiltonian systems with the analytic right sides 
[l] would also hold for the systems with piece-wise analytic right sides. 

Theorem. Let H (5, y) = h be a family of closed curves Ch dependent on the 

parameter h, and matched from segments Hi (z, y) = h on the intervals % < 2 d zi i 1. 
Functions Hi (z, y) are analytic in each of their arguments. 

Then a unique limit cycle exists in the neighborhood of the closed curve Ch,+ for the 


